Definitions:

Forced Vital Capacity (FVC): the volume delivered during an expiration made as forcefully and completely as possible starting from full inspiration

Forced Expiratory Volume in the first second (FEV₁): the volume delivered in the first second of an FVC maneuver

Obstruction: flow limitation is observed during spirometry. If the observed FEV₁/FVC ratio is down 10 or more from the predicted, obstruction is present.

Restriction: Spirometry with low FVC (< 80%) can only suggest restriction. Further testing is needed to confirm.

Acceptability criteria from the American Thoracic Society:
- Good start of test/rapid rise
- Single, clearly defined peak
- Good end of test (6 sec for adults/3 sec for children)
- Free from artifacts (i.e. cough, glottic closure, leaking)

Examples of unacceptable tests:
- Slow start of test
- Rounded peak
- Early termination
- Cough in first second

Repeatability criteria for the American Thoracic Society:
Three (3) acceptable tests must be performed with two (2) tests having FEV₁ and FVC within .15L or 150mL of each other.

Coaching patients through spirometry:
Instruct patient to breathe normally. When patient is ready, have him/her take his/her deepest breath and blow as hard as he/she can as long as he/she can. There is a learning curve for spirometry. Use positive reinforcement to build on the patient’s successes. (For example, “That was really good; this time take an even deeper breath.”) Always demonstrate the spirometry maneuver, especially if language is a barrier or communication issues arise.

Appropriate bronchodilator use:
If testing for reversibility, give patient 4 puffs of bronchodilator with a spacer or a standard nebulized dose. Wait 15 minutes after last dose to perform post-bronchodilator maneuver. If a patient cannot perform acceptable baseline maneuvers according to American Thoracic Society criteria or there is no evidence of airflow obstruction, do NOT give a bronchodilator.

References:

Spirometry must establish a solid baseline meeting all criteria for acceptability and repeatability. For patients 8-80 years old, use NHANES III. For children under the age of 5-8 years, use Wang. Testing children < age 5 is likely to be unsuccessful. Always have your patient sit when performing spirometry. Follow all OSHA and JCAHO standards for infection control.

Contraindications:
- Recent surgery
- Within one month of a myocardial infarction
- Recent pneumothorax
- Unable to understand directions or inability to seal mouthpiece

CPT codes for spirometry:
94010 spirometry 94060 spirometry with bronchodilator (pre- and post-test) When using these CPT codes, better reimbursement happens when current symptoms are associated with the appropriate ICD9 code for asthma or COPD.

Refer to a specialist:
- If patient has severe obstruction
- If patient has a restrictive pattern
- If patient does not respond to medications
ASSESSMENT

Is this a good test?
(Acceptability and repeatability criteria on reverse)

Check FVC. If normal (≥80%), restriction can be ruled out. If reduced, further testing is needed to differentiate restriction from obstruction with air-trapping.

Pre-Bronch

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>% Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>2.09</td>
<td>2.78</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>1.06</td>
<td>2.08</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

Post-Bronch

<table>
<thead>
<tr>
<th>Observed</th>
<th>% Predicted</th>
<th>Post</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>2.03</td>
<td>73</td>
<td>-3</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>1.07</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>53</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Consistent with asthma diagnosis. Yes No

Sample written asthma interpretation:
The FEV1/FVC ratio being down more than 10 from predicted is consistent with airflow obstruction. The FEV1 being 77% of predicted suggests a mild airflow obstruction (based on the 2005 ATS/ERS guide for severity of obstruction). The post bronchodilator study reveals a significant response to albuterol with the FEV1 increasing 15% or 550cc. This finding is consistent with diagnosis of asthma although clinical correlation is needed to confirm. (Based on the 2007 NAEP guidelines for asthma severity), this 28 year old male with a baseline FEV1 of 77% has moderate persistent asthma.

Sample written COPD interpretation:
The FEV1/FVC ratio being down more than 10 from predicted is consistent with airflow obstruction. The FEV1 being 51% of predicted suggests a moderately-severe airflow obstruction (based on the 2005 ATS/ERS guidelines for severity of obstruction). No significant response to albuterol was revealed as the FEV1 only increased 2%. Further testing revealed a diffusion capacity of 50% of predicted. The lateral chest film showed signs of hyperinflation and flattened diaphragm and the chest CT had classic changes seen in emphysema. (Based on the 2007 GOLD guidelines for COPD severity), this 74 year old female with a baseline FEV1 of 51% has Stage II moderate COPD.

COPD

ATS/ERS* Degree of severity of obstruction based on FEV1

<table>
<thead>
<tr>
<th>Degree of severity</th>
<th>FEV1, % predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>>70</td>
</tr>
<tr>
<td>Moderate</td>
<td>60-69</td>
</tr>
<tr>
<td>Moderately severe</td>
<td>50-59</td>
</tr>
<tr>
<td>Severe</td>
<td>35-49</td>
</tr>
<tr>
<td>Very severe</td>
<td><35</td>
</tr>
</tbody>
</table>

Airflow obstruction that is not significantly reversible does NOT rule out asthma.

To help differentiate COPD from asthma with airway remodeling/fixed obstruction, further testing options include: DLco, chest x-ray, and chest CT.

DIAGNOSIS

What is the observed ratio (FEV1/FVC) compared to predicted? Down 10 or greater = airflow obstruction

FEV1/FVC (%) 68

Daily Asthma/Fixed COPD Treatment Selection:

Intermittent Mild Moderate Severe

Asthma Severity

Persistent

Stage I: mild Stage II: moderate Stage III: severe Stage IV: very severe

COPD Severity

FEV1/FVC < 70% FEV1 > 80% predicted FEV1/FVC > 80% predicted FEV1/FVC < 70% predicted FEV1/FVC < 70% predicted FEV1/FVC < 80% predicted FEV1/FVC < 80% predicted FEV1/FVC < 70% predicted FEV1/FVC < 80% predicted FEV1/FVC < 80% predicted

* American Thoracic Society/European Respiratory Society

Is it reversible? FEV1 ≥ 12% and ≥ 200 mL in youths and adults 12+ ≥ 15% and ≥ 200 mL in children < 12

Consistent with asthma diagnosis.

Normal FEV1 between exacerbations FEV1 > 80% predicted FEV1/FVC > 85%

Stage I: mild Stage II: moderate Stage III: severe Stage IV: very severe

COPD Severity

FEV1/FVC < 70% FEV1 > 80% predicted FEV1/FVC > 80% predicted FEV1/FVC < 70% predicted FEV1/FVC < 80% predicted

Intermittent Mild Moderate Severe

Asthma Severity

Persistent

Stage I: mild Stage II: moderate Stage III: severe Stage IV: very severe

COPD Severity

FEV1/FVC < 70% FEV1 > 80% predicted FEV1/FVC > 80% predicted FEV1/FVC < 70% predicted FEV1/FVC < 80% predicted

Is this a good test? (Acceptability and repeatability criteria on reverse)

Check FVC. If normal (≥80%), restriction can be ruled out. If reduced, further testing is needed to differentiate restriction from obstruction with air-trapping.

Pre-Bronch

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>% Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>5.25</td>
<td>5.68</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>3.59</td>
<td>4.64</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>68</td>
<td>82</td>
</tr>
</tbody>
</table>

Post-Bronch

<table>
<thead>
<tr>
<th>Observed</th>
<th>% Predicted</th>
<th>Post</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>5.35</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>4.14</td>
<td>89</td>
<td>15</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>77</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Sample written asthma interpretation:
The FEV1/FVC ratio being down more than 10 from predicted is consistent with airflow obstruction. The FEV1 being 77% of predicted suggests a mild airflow obstruction (based on the 2005 ATS/ERS guide for severity of obstruction). The post bronchodilator study reveals a significant response to albuterol with the FEV1 increasing 15% or 550cc. This finding is consistent with diagnosis of asthma although clinical correlation is needed to confirm. (Based on the 2007 NAEP guidelines for asthma severity), this 28 year old male with a baseline FEV1 of 77% has moderate persistent asthma.

Sample written COPD interpretation:
The FEV1/FVC ratio being down more than 10 from predicted is consistent with airflow obstruction. The FEV1 being 51% of predicted suggests a moderately-severe airflow obstruction (based on the 2005 ATS/ERS guidelines for severity of obstruction). No significant response to albuterol was revealed as the FEV1 only increased 2%. Further testing revealed a diffusion capacity of 50% of predicted. The lateral chest film showed signs of hyperinflation and flattened diaphragm and the chest CT had classic changes seen in emphysema. (Based on the 2007 GOLD guidelines for COPD severity), this 74 year old female with a baseline FEV1 of 51% has Stage II moderate COPD.