Seminar 4001 "Does Impulse Oscillometry Play a Role in Asthma Management"
James W. Baker MD, Joseph Spahn MD

References
1. Google (impulse oscillometry Jaeger)
 select pdf article - (Forced oscillation technique and impulse oscillometry) by H. J. Smith, etal.
 This is a good article covering theory. I needed to huddle with an engineer to understand the equations. A physician can use the equipment without understanding the theory but it is helpful to know the theory especially the concept of reactance.
2. Shi, Y, etal, Relating small airways to asthma control by using impulse oscillometry in children, JACI 129, 3, 671-678
3. Larson, G, etal, Impulse oscillometry versus spirometry in a long term study of controller therapy for pediatric asthma. JACI 123, 4, 861-7

Notes
Resistance in Series
 Pressure = Flow x Resistance
 Total resistance = R1+R2…..

Resistance in Parallel
 Σ1/R = (1/R1+1/R2…..)

Natural Respiratory Oscillation
 Sine wave – resistance dependent on flow hence resistance is always changing

Impedance
 Impedance = effective pressure/effective flow after being discriminated from underlying respiratory pressure and flow and their harmonics.
 the total of properties which work against your effort to breath in elements downstream that cause a loss of energy

Location of obstruction
 Proximal airway obstruction increases resistance independent of oscillation frequency
 Distal airway obstruction is highest at low frequency of oscillation and falls with increasing frequency

Reactance
 Reactance = inertia of the gas moving through the conducting airways plus capacitance

Capacitance
 Low frequency capacitance expresses the ability of the respiratory tract to store energy primarily in the lung periphery. In both fibrosis and emphysema capacitance is reduced
 In fibrosis because of the stiffness of the lung
 In emphysema because of the hyperinflation and loss of lung elastic recoil.
 X5 increases in restriction and in hyperinflation-it does not differentiate

Resonant frequency
 Is defined as the frequency at which the magnitudes of capacitive and inertive reactance are equal

Static Compliance
 Static compliance = pulmonary compliance during periods without gas flow.

Dynamic Compliance
 Change in volume/change in pressure during the course of a breath
Impulse Oscillometry System
measures lungs during normal title breathing
sound wave creates the oscillations, breathing is normal. (Pleteysmography-diaphragm creates the energy).
Basic method: apply pressure to mouth and measure resulting change in flow
Resistance = pressure/flow
pressure in phase with flow
Reactance = echo pressure/flow
pressure out of phase with flow
what do we mean by "frequency"
frequency of breathing = 8 to 30 breaths per minute
frequency of impulses = 300 impulses per minute
each impulse has five sound frequencies
with each impulse:
 rapid changes in flow = 30Hz = 1800 cycles per minute
 slower changes in flow = 5-15 Hz = 300-900 cycles per minute
where do the impulses go
 all frequencies go to the larger airways
 only slow frequencies can get to the periphery
 (all - small) = large
Comparison of systems
Impulse oscillometry
 measures tidal breathing
 non effort dependent
 measures large and small airway resistance
 normalizes chest wall abnormalities
 determines the reactive component of the airway
 does not differentiate fibrosis from emphysema
 does not directly indicate air trapping
 expensive
 quick
 easy to maintain and train personnel
Spirometry
 measures maximal effort
 effort dependent
 does not measure small airways directly
 relatively quick
Pletysmography
 measures maximal effort
 effort dependent
 measures lung volumes and airway resistance
 requires training and skill in running the equipment
 expensive
 measurement takes time
All systems capable of adding information about:
 Reversibility
 Non-specific bronchial reactivity
 Specific bronchial reactivity