Differentiation and function of follicular helper CD4 T cells (T_{FH})

Shane Crotty
the immunobiology of B cell and CD4 T cell responses to vaccines

- **Naive B cell**
- **antigen**
- **activated B cells**
- **plasmablast/short-lived plasma cell**
- **germinal center**
- **short-lived plasma cell**
- **long-lived plasma cell**
- **memory B cell**
the immunobiology of B cell and CD4 T cell responses to vaccines
How do you get T cell help to B cells?

The diagram illustrates the interaction between T cells and B cells in the context of the immune response. It shows the following key elements:

- **T cell zone**: Site where T cells are located.
- **MZ follicle**: Marginal zone follicle where B cells reside.
- **Germinal center (GC)**: Area where B cells undergo affinity maturation and germinal center formation.
- **Plasmablast/plasma cells**: Cells that produce antibodies.
- **Memory B cells**: Long-lived B cells that can respond quickly to future infections.
- **Exit to blood and bone marrow**: Pathway for B cells to leave the lymph node.

The diagram also highlights the roles of different T cell subsets:

- **Th1**: T helper 1 cells, which are involved in the immune response against intracellular pathogens.
- **Th2**: T helper 2 cells, which are involved in the immune response against extracellular pathogens.
- **Th17**: T helper 17 cells, which are involved in chronic inflammation.
- **Treg**: Regulatory T cells, which suppress immune responses.

The diagram is modified from Crotty AE 2011.
GC B cell state
GC B memory B cell
Tfh
GC B plasma cell
mutation
cell division
GC B apoptosis
Bcl6 is a central regulator of Tfh differentiation and T cell help to B cells

5000 SMARTA + 10⁵ LCMVarm → day 7-8
analyze T and B cells

virus-specific CD4 T cells

Control

Bcl6⁺

32%

85%

Science, 2009
Bcl6 is a central regulator of Tfh differentiation and T cell help to B cells

5000 SMARTA + 10^5 LCMVarm → day 7-8 analyze T and B cells

virus-specific CD4 T cells

Control

Bcl6+

GFP+

Bcl6+

germinal center B cells

D45

NP-Ova IgG (x10^3)

no cells GFP Bcl6

Science, 2009
Bcl6 and Tfh differentiation are antagonized by Blimp-1
Bcl6 and Tfh differentiation are antagonized by Blimp-1
SAP is required in CD4 T cells for GCs and long term humoral immunity

Figure 1

Figure 2

Table

<table>
<thead>
<tr>
<th>Days after infection</th>
<th>LCMV-specific IgG ASC per 10^6 cells</th>
<th>LCMV-specific memory B cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10^2</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>10^3</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>10^4</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>10^5</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>10^5</td>
</tr>
<tr>
<td>125</td>
<td>100</td>
<td>10^5</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>10^5</td>
</tr>
</tbody>
</table>

Legend

- Black = WT
- Red = SAP KO

Nature, 2003

JI 2007
Tfh cells are required for germinal centers, and therefore the bulk of B cell memory: memory B cells and long-lived plasma cells.

Tfh cells are limiting for this process.
Figure 3

- **SM CD4 T cell %**
 - 0.0
 - 0.4
 - 0.8
 - 1
 - 3
 - 4
 - 5

- **WT**
 - CD25+/-- anti-IL-2
 - IL-2

- **Bcl6**
 - **CD25**
 - CXCR5

- **Memory B cells**
 - **plasmablast/plasma cell**

- **Wildtype**
 - **plasmablast/plasma cell**
 - **plasmablast/plasma cell**

- **Germininal center**
 - **FDC**
 - **GC Tfh**

- **Tfh sites of Infection/Inflammation**

- **DC**
 - **Nai**
 - **Bcl6**
 - **PD-1 MFI**

- **Th1**
 - **Th2**
 - **Th17**
 - **Treg**

- **Bone marrow**
 - **Blood and exit to**

- **Immunity 2011**
 - **JEM 2012**
 - **JL 2013**
Tfh cell fate commitment

- **Fig 3A**
 - IL2R
 - Blimp1

- **Fig 3B**
 - 41.7
 - 46.5

- **Fig 3C**
 - D3 LCMV-infected mice
 - Infected-matched mice
 - Day 3 p.i.
 - Day 8 p.i.
 - Transfers
 - FACS analysis

- **Fig 3D**
 - IL-2Rα
 - IL-2Rα

- **Fig 3E**
 - CD45.1+ SM
 - IL2Rα

- **Fig 3F**
 - Bcl6
 - Blimp1

- **Fig 3G**
 - IFN-γ

Choi et al., JI 2013
Tfh cell fate commitment

Choi et al., JI 2013
Human Tfh cells
Human Tfh and GC Tfh cells

Tonsil or LN

Gated on CD4+ CD45RO+

Figure 1

Fold change in MFI

Kroenke et al., 2012
Why do some people generate broadly neutralizing antibodies against HIV?

1. Tfh cells are required for germinal centers, and therefore the bulk of B cell memory: memory B cells and long-lived plasma cells.

2. Tfh cells are limiting for this process.

3. Generation of broadly neutralizing Abs against HIV/SIV requires extensive somatic mutation, and therefore requires exquisitely optimized germinal center responses.

How can a vaccine elicit broadly neutralizing antibodies against HIV?
Why do some people generate broadly neutralizing antibodies against HIV?

IAVI Protocol C cohort: 800+ HIV+ African individuals tracked longitudinally and examined for HIV neutralizing antibodies

- Top = Neutralization of 5-6 representative HIV strains
- Low = Neutralization of < 2 HIV strains
Are blood CXCR5\(^+\) cells predictive of HIV neutralizing antibody responses?

\[
\begin{array}{c}
\text{total CXCR5}^+ \% \\
\hline
0.029 \quad \text{ns}
\end{array}
\]

\[
\begin{array}{c}
\% \text{CXCR5}^+ \text{ of CD4}^+ \\
\hline
0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25
\end{array}
\]

\[
\begin{array}{c}
\text{HIV}^- \quad \text{Top} \quad \text{Low} \quad \text{HIV}^+
\end{array}
\]
Are blood recently activated Tfh cells predictive of HIV neutralizing antibody responses?

ICOS+ PD1hi CXCR5+ recently activated Tfh cells
Which subset of blood CXCR5$^+$ cells is most related to T_{FH} cells from lymphoid tissue?

Immunity, Sept 2013
Which subset of blood CXCR5$^+$ cells is most related to T$_{FH}$ cells from lymphoid tissue?
Is PD-1 expression stable on blood CXCR5+ cells?

Day3 Day5 Day10 Day15 Day20

PD-1+

PD-1-

CXCR5

PD1+

PD1-

PD-1+

PD-1-
Which subset of blood CXCR5$^+$ cells is most related to T_{FH} cells from lymphoid tissue?

Top 100 genes differentially regulated in comparison to blood CXCR5$^-$ cells

Blood CD4$^+$CD45RO$^+$

*CXCR5$^-$

*PD1$^+$CXCR3$^+$

*PD1$^+$CXCR3$^-$

*PD1$^-$CXCR3$^-$

*blood CXCR5$^+$

Tonsil CD4$^+$CD45RO$^+$

CXCR5$^-$

GC Tfh
Blood CXCR5+ PD1+ CD4 T cell secreted molecules

CXCR5+

<table>
<thead>
<tr>
<th>PD1+</th>
<th>PD1-</th>
<th>PD1+</th>
<th>PD1-</th>
<th>CXCR5-</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCR3-</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>CXCR3-</td>
<td>38</td>
<td>21</td>
<td>42</td>
<td>24</td>
</tr>
</tbody>
</table>

Unstim

PMA/Iono

% of IL-21+ cells

% of IL-4+ cells

% of IL-IFN+ cells

% of IL-2+ cells
Blood CXCR5+ CD4 T cell help to B cells

CXCR5+

PD1+ CXCR3-
PD1- CXCR3-
PD1+ CXCR3+
PD1- CXCR3+
CXCR5-

IgG

B cells

IgM

Plasmablasts

PD1+ CXCR3-
P D1- CXCR3-
P D1+ CXCR3+
P D1- CXCR3+
CXCR5-
P D1+ CXCR3-
P D1- CXCR3-
P D1+ CXCR3+
P D1- CXCR3+
CXCR5-
Are CXCR5$^+$ PD1$^+$ cells memory T$_{FH}$ cells?
Why do some people generate broadly neutralizing antibodies against HIV?

IAVI Protocol C cohort: 800+ HIV+ African individuals tracked longitudinally and examined for HIV neutralizing antibodies.

* Top = Neutralization of 5-6 representative HIV strains
* Low = Neutralization of < 2 HIV strains
Are blood CXCR5⁺ PD1⁺ cells predictive of HIV neutralizing antibody responses?

earliest available time point

0.0037

C

time of bnAb development

0.0010
PD1⁺CXCR3⁻CXCR5⁺ CD4 T cells are highly functional memory Tfh cells, and they are a biomarker associated with the capacity to make broadly neutralizing antibodies against HIV.
Collaborators
Bjoern Peters, LJI
Bin Li
Yun-Cai Liu, LJI
Nengming Xiao
Alex Sette, LJI
Anjana Rao, LJI
Gustavo Martinez
Mick Croft, LJI
Sonia Sharma, LJI
James Gray
Matthew Pipkin, Scripps Florida
Ari Melnick, Cornell Med
Katerina Hatzi, Cornell Med
Marcella Bothwell, Rady’s Children’s Hospital / UCSD
Terence Davidson, UCSD
Matthew Brigger, SD Navy Hospital
Ananda Goldrath, UCSD
Laura Shaw
Steve Hedrick, UCSD
Mark Davis, Stanford
Laura Su, Stanford
Pam Schwartzberg, NIH NHGRI
Fang Zhao, NIH NHGRI
Jennifer Cannons, NIH NHGRI
Pascal Poignard, Scripps
Elise Landais, Scripps
The IAVI Protocol C Consortium
Elias Haddad, VGTI
Rafael Cubas, VGTI
Joe Craft, Yale
Rafi Ahmed, Emory

Funding
NIH NIAID (R01/U19)
LJI Institutional Funds
Pew Scholars
GC B cell state
- GC B memory B cell
- Tfh
- GC B plasma cell
- mutation
- cell division
- GC B apoptosis

T B
T B
plasmablast/plasma cell

germinal center

exit to blood and bone marrow

Th1 sites of infection/inflammation
- Th2
- Th17
- Treg
- Tfh

GC Tfh

plasma cells

MZ follicle

FDC

B B
B B
B B
B B
B B
B B
B B
B B
B B
B B
B B
B B

T T

T T

B T

Th1

Tfh

Tfh

Tfh

Tfh

DC

T cell zone

T B